Augmented Lagrangian Duality and Nondifferentiable Optimization Methods in Nonconvex Programming

نویسنده

  • Rafail N. Gasimov
چکیده

Abstract. In this paper we present augmented Lagrangians for nonconvex minimization problems with equality constraints. We construct a dual problem with respect to the presented here Lagrangian, give the saddle point optimality conditions and obtain strong duality results. We use these results and modify the subgradient and cutting plane methods for solving the dual problem constructed. Algorithms proposed in this paper have some advantages. We do not use any convexity and differentiability conditions, and show that the dual problem is always concave regardless of properties the primal problem satisfies. The subgradient of the dual function along which its value increases is calculated without solving any additional problem. In contrast with the penalty or multiplier methods, for improving the value of the dual function, one need not to take the ‘penalty like parameter’ to infinity in the new methods. In both methods the value of the dual function strongly increases at each iteration. In the contrast, by using the primal-dual gap, the proposed algorithms possess a natural stopping criteria. The convergence theorem for the subgradient method is also presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a Modified Subgradient Algorithm for Dual Problems via Sharp Augmented Lagrangian

We study convergence properties of a modified subgradient algorithm, applied to the dual problem defined by the sharp augmented Lagrangian. The primal problem we consider is nonconvex and nondifferentiable, with equality constraints. We obtain primal and dual convergence results, as well as a condition for existence of a dual solution. Using a practical selection of the step-size parameters, we...

متن کامل

A geometric framework for nonconvex optimization duality using augmented lagrangian functions

We provide a unifying geometric framework for the analysis of general classes of duality schemes and penalty methods for nonconvex constrained optimization problems. We present a separation result for nonconvex sets via general concave surfaces. We use this separation result to provide necessary and sufficient conditions for establishing strong duality between geometric primal and dual problems...

متن کامل

Solutions and optimality criteria for nonconvex constrained global optimization problems with connections between canonical and Lagrangian duality

Abstract This paper presents a canonical duality theory for solving a general nonconvex 1 quadratic minimization problem with nonconvex constraints. By using the canonical dual 2 transformation developed by the first author, the nonconvex primal problem can be con3 verted into a canonical dual problem with zero duality gap. A general analytical solution 4 form is obtained. Both global and local...

متن کامل

Duality in Nonlinear Programs Using Augmented Lagrangian Functions*

A generally nonconvex optimization problem with equality constraints is studied. The problem is introduced as an “inf sup” of a generalized augmented Lagrangian function. A dual problem is defined as the “sup inf’ of the same generalized augmented Lagrangian. Sufftcient conditions are derived for constructing the augmented Lagrangian function such that the extremal values of the primal and dual...

متن کامل

Numerical Comparison of Augmented Lagrangian Algorithms for Nonconvex Problems

Augmented Lagrangian algorithms are very popular tools for solving nonlinear programming problems. At each outer iteration of these methods a simpler optimization problem is solved, for which efficient algorithms can be used, especially when the problems are large. The most famous Augmented Lagrangian algorithm for minimization with inequality constraints is known as Powell-Hestenes-Rockafellar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Global Optimization

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2002